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SUMMARY: 
Extreme winds such as hurricanes and thunderstorms often present non-stationary characteristics, having time-
varying mean wind speeds and non-stationary wind fluctuations. When concerning wind-induced vibrations under 
non-stationary wind, the excitation will be a non-stationary process, and the wind-structure coupled system can be 
represented by a linear time-varying system. The study aims to present a state augmentation method to investigate 
the non-stationary buffeting of a long-span bridge subjected to non-stationary wind. The unsteady self-excited forces 
and the non-stationary turbulence-induced forces, i.e., buffeting forces, are included both in this study to predict the 
flutter and buffeting response. Based on Itô’s Formula, the statistical moments of the response are derived through 
solving a first-order ordinary differential equation system. This study is regarded as subsequent research by the 
author in order to generalize the previous one in a single degree of freedom case to a multiple degree of freedom 
case and take the unsteady aerodynamic effects into consideration.  
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1. INTRODUCTION 
In contrast with the stationary synoptic wind, extreme wind events such as hurricanes and 
thunderstorms always exhibit considerable non-stationary characteristics. When considering 
aeroelastic effects, the aerodynamic damping and stiffness will be time-dependent due to the 
time-varying mean wind speed, and the wind-structure coupled system will be a linear time-
varying (LTV) system (L. Hu et al., 2013). In view of these non-stationary effects, many 
attempts have been made to develop random vibration theory for non-stationary buffeting, 
including the Monte Carlo method, generalized frequency-domain method, and pseudo excitation 
method. However, some methods may need intensive calculations due to time-integration 
process, and the others may be difficult to consider time-dependent system properties. 
 
Based on the theory of Itô’s Stochastic Differential Equation, Grigoriu (M. Grigoriu and S. 
Ariaratnam, 1988) proposed the state augmentation method to calculate the stochastic response 



 

 

of linear systems subjected to stationary excitations. With this method, the statistical moments of 
any order of the response can be directly obtained by solving a system of linear differential 
equations with high efficiency. Although this method has been applied in several wind 
engineering problems, such as non-Gaussian turbulence (W. Cui et al., 2022), it has been rarely 
reported for non-stationary buffeting analysis. This paper aims to extend the state augmentation 
method to investigate the non-stationary buffeting of a long-span bridge subjected to non-
stationary wind loads. This study is regarded as subsequent research by the author (Lei et al., 
2022) in order to generalize the previous one in a single degree of freedom case to a multiple 
degree of freedom case and take the unsteady aerodynamic effects into consideration. 
 
 
2. NON-STATIONARY WIND-INDUCED VIBRATIONS OF BRIDGES  
 
2.1. Dynamics of Bridge Deck Motions 
The motions 𝐗!  of the full-order bridge deck subjected to self-excited forces 𝐅"#  and non-
stationary buffeting forces 𝐅$ are determined by solving the dynamic equation 
 
𝐌!�̈�! + 𝐂!�̇�! + 𝐊!𝐗! = 𝐅"# + 𝐅$                         (1) 
 
in which 𝐌!, 𝐂! and 𝐊! are the mass, damping and stiffness matrices, respectively. 
 
2.2. Unsteady Aerodynamic Forces in Time domain 
The flutter derivatives are approximated in terms of rational functions known as Roger’s 
approximation. In this case, the unsteady self-excited forces in the time domain are obtained as 
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where 𝐀%"# , 𝐀&"# , 𝐀,"# , 𝐀-0,"#  and 𝑑-"# ≥ 0  are frequency-independent coefficients. 𝛟-

"# 	  are 
additional variables introduced to consider the unsteady effect. Note that the time-varying mean 
wind speed is considered in the aerodynamic coefficients due to its slow variation compared to 
the primary frequency of the bridge. Analogous to the self-excited forces, the non-stationary 
buffeting forces in the time domain can be expressed as 
 
𝐅$ = 𝛽1(𝑡)𝐅$1 + 𝛽2(𝑡)𝐅$2                           (3a) 
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in which 𝐀%1 , 𝐀-0%1  and 𝑑-1 ≥ 0  are frequency-independent coefficients. 𝛟-

1	 are additional 
variables. 𝛽1(𝑡)  and 𝛽2(𝑡)  are the slowly varying time-modulation functions. 𝐮"  are the 
derived stationary Gaussian processes with zero means. 
 
2.3. Augmented States of the System and Excitation 
With the help of the modal-superposition method, the generalized dynamic equation is derived as 



 

 

 
𝐌3�̈� + 𝐂3�̇� + 𝐊3𝐪 = 𝐐"# + 𝛽1𝐐$1 + 𝛽2𝐐$2                     (4) 
 
in which 𝐌3, 𝐂3and 𝐊3are the generalized modal mass, damping and stiffness, respectively. 𝐪 
is the modal coordinate vector. 𝐐"# = 𝚿4𝐅"#  is the generalized self-excited force vector. 
𝐐$1 = 𝚿4𝐅$1 and 𝐐$2 = 𝚿4𝐅$2 are the generalized buffeting force vectors. 𝚿 is the matrix 
of mode shapes. The generalized dynamic equation is transformed to its state-space form 
 
�̇� = 𝓐(𝑡)𝐘 + 𝓑1(𝑡)𝐮",3 +𝓑2(𝑡)𝐰",3                        (5) 
 
in which 𝐘  is the state vector.	 𝓐 , 𝓑1  and 𝓑2  are matrices of deterministic time-varying 
coefficients. 𝐮",3  and 𝐰",3  are the generalized stationary Gaussian pseudo-fluctuations which 
can be approximated individually by multivariate Ornstein-Uhlenbeck (OU) processes, i.e., 
𝐮",3 ≈ 𝐙1(𝑡) and 𝐰",3 ≈ 𝐙2(𝑡), which satisfy the stochastic differential equation 
 
d𝐙1(𝑡) = −𝛂1𝐙1(𝑡)d𝑡 + 𝚯1d𝐖1(𝑡)                        (6a) 
d𝐙2(𝑡) = −𝛂2𝐙2(𝑡)d𝑡 + 𝚯2d𝐖2(𝑡)                       (6b) 
 
in which 𝛂1 , 𝚯1 , 𝛂2  and 𝚯2  are the corresponding coefficient matrices, and 𝐖1  and 𝐖2 
are the corresponding Wiener processes which are mutually independent. By substituting Eq. (6) 
into Eq. (5), the augmented states of the system and the excitations are written as 
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Eq. (7) is usually recognized as an Itô-type stochastic differential equation of the form 
 
d𝕐(𝑡) = 𝐠(𝕐(𝑡), 𝑡)d𝑡 + 𝐡(𝕐(𝑡), 𝑡)d𝐖                        (8) 
 
in which 𝕐 is the augmented state vector. 𝐠 and 𝐡 are explicit functions of 𝕐 and time 𝑡. 
 
2.4. Differential Equations Satisfied by Statistical Moments 
Assume 𝜉(𝕐) as a scalar-valued function of 𝕐, i.e., 𝜉(𝕐) = ∏ 𝕐6

7&8
6  where the superscript 𝑎6 is 

the non-negative integer exponent. According to Itô’s lemma 
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For a prescribed order of 𝑠 = ∑ 𝑎68

6/% , substituting all the combinations of 𝑎6 into Eq. (9) gives 
 
�̇�" = 𝐏%(𝑡)𝐦" + 𝐐%(𝑡) + 𝐏&𝐦">& + 𝐐&                      (10) 
 
in which 𝐦" = E`∏ 𝕐6

7&8
6 a is the vector of all the statistical moments in the order of 𝑠. 𝐏%, 𝐏&, 

𝐐%  and 𝐐&  are the coefficient matrices corresponding to the system properties. The above 
formulas are the basis of the state augmentation method. 



 

 

 
 
3. NUMERICAL APPLICATIONS 
As an example of application of the SAM, the proposed method is applied to calculate the non-
stationary vibrations of the bridge deck of a long-span bridge (Shenzhen–Zhongshan Bridge in 
China) subjected to non-stationary wind. The first symmetric torsional mode together with three 
prior symmetric vertical modes is considered in this study, with the modal frequencies 𝑛% =
0.1049	Hz , 𝑛& = 0.1366Hz , 𝑛, = 0.2256	Hz  and 𝑛? = 0.2987	Hz  (torsional frequency), 
respectively. Simiu and Panofsky type spectra are adopted to represent the along-wind and 
vertical wind turbulence, with 𝑢∗ = 1.6	m/s. The time-varying wind speed model is given by 
𝑈s(𝑡) = (𝑈sABC − 𝑈sADE)(𝑡/𝑡F) exp(1 − 𝑡/𝑡F) + 𝑈sADE  where 𝑈sABC = 40	m/s , 𝑈sADE = 5	m/s 
and 𝑡F = 60	s. Fig. 1 shows the RMS responses for the vertical and rotational displacements at 
the mid-span. The results are calculated from 0 s to 600 s. 
 

 
(a)                   (b) 

 
Figure 1. Time-varying RMS response at the mid-span: (a) vertical displacement; (b) rotational displacement. 

 
 
4. CONCLUSIONS 
This study investigated the non-stationary vibrations of the bridge deck of a long-span bridge 
subjected to non-stationary unsteady wind loads. Based on Itô’s Formula, a state augmentation 
method is presented to calculate the statistical moments of the non-stationary buffeting response. 
It is seen that the statistical moments can be directly obtained by solving the first-order ordinary 
differential equation without going through an intermediate step, e.g., the response spectra. 
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